
1

TCP Tuning with Quattor

Jérôme Pansanel <jerome.pansanel@iphc.cnrs.fr>
22 Mar 2010

This document presents the usage of Quattor for modifying kernel parameters in order to improve TCP performances.
It is divided in four sections:

• Quattor usage for modifying kernel parameters

• Relevant kernel parameters for TCP tuning

• Benchmark tools

• Further reading

Quattor usage for modifying kernel parameters
This section describes how to modify kernel parameters with Quattor.

Sysctl
The sysctl software is a command line tool for examining and dynamically modifying the kernel parameters. The
available parameters are those listed under /proc/sys. The sysctl command can be used in two ways for parameter
modifications:

• By directly passing the parameter to the sysctl command. This method is useful for testing a parameter, as the
modification will not persist after the next reboot.

[root@localhost ~]$ sysctl -w net.core.rmem_max=8388608

• By adding the parameter to the /etc/sysctl.conf file and loading it with the sysctl command. This way is
interesting when you want to preserve the modification over a reboot.

[root@localhost ~]$ echo 'net.core.rmem_max=8388608' >> /etc/sysctl.conf
[root@localhost ~]$ sysctl -p

It can also be used in the following way to get the current value of a parameter. This is useful for verifying that your
modification has been successfully applied.

[root@localhost ~]$ sysctl net.core.rmem_max
net.core.rmem_max = 8388608

The sysctl Quattor component
Quattor provides a dedicated component to handle the /etc/sysctl.conf configuration file. To modify the
content of this file, include the sysctl component in your template and set the /software/components/sysctl/
variables path to a nlist:

include { 'components/sysctl/config' };

'/software/components/sysctl/variables' = nlist(
 'net.core.rmem_max','8388608',
);

TCP Tuning with Quattor

2

Note that when you remove a parameter from the template, it is not deleted from the /etc/systctl.conf file on
the host. You have to do it manually.

The current TCP tuning in the templates
Several QWG templates are currently modifying the kernel parameters to enhance the TCP performance:

• grid/glite-3.1/glite/se_dpm/disk/service.tpl

• grid/glite-3.2/glite/se_dpm/disk/service.tpl

• grid/glite-3.2/glite/vobox/config.tpl

Relevant kernel parameters for TCP tuning
The performance of TCP/IP can be significantly increased by carefully tuning several parameters:

• TCP window

• SACK and DSACK

• Timestamps

• Backlog

TCP window
A TCP window is the amount of outstanding (unacknowledged by the recipient) data a sender can send on a particular
connection before it gets an acknowledgment back from the receiver that it got some of it. In theory, the TCP window
size should be set to be the product of the available network's bandwidth and the round-trip time of data going over
the network:

buffer size = bandwidth * RTT

The round-trip time is the delay between the emission of a signal at one side of a line and the acknowledgement of its
reception. In our case the signal is generally a data packet, and the time is also known as ping time. Look at the ping
statistics to get the average RTT to a remote host (You should try to make an oversea ping).

--- host.oversee.gov ping statistics ---
11 packets transmitted, 11 received, 0% packet loss, time 10011ms
rtt min/avg/max/mdev = 109.101/109.409/110.155/0.476 ms, pipe 2

For example, if a network has a bandwidth of 1 Gbits/s and the round-trip time (RTT) was 110ms, the theoretical
maximum buffer size should be 109 * 110 * 10-3 bits (13750000 bytes) to use 100% of your bandwidth.

There are two TCP settings that modify the buffer size and affect the TCP window:

• The maximum TCP send and receive buffer size; they can be set with the following lines:

'net.core.rmem_max','8388608',
'net.core.wmem_max','8388608',

• The default send and receive buffer size. These parameters are composed of a vector of 3 integers (min, default, max).
The first integer is the minimal size of buffer used by TCP socket. It is guaranteed to each TCP socket, even under
moderate memory pressure. The second integer is the initial size of buffer used by TCP sockets, and the third integer
is the maximal size of buffer allowed for automatically selected buffers for TCP socket. This last parameter does not
override the net.core.(r|w)mem_max parameter. The size of the buffer is dynamically tuned by the kernel and
is limited by the min and max integers. These parameters can be modified with the following lines:

'net.ipv4.tcp_rmem','4096 87380 8388608',

TCP Tuning with Quattor

3

'net.ipv4.tcp_wmem','4096 65536 8388608',

The above settings will set a maximum of 8 MBytes buffers. For oversea data transfer, it is recommended to use at least
4MBytes maximum buffer size and a maximum of 16 MBytes should be enough. It is not recommended to set a very
high values for those parameters, and especially do not set the same value for all the fields in net.ipv4.tcp_(r|
w)mem. It is also a good practice to have the same value for net.core.r(w)mem_max with the last value in the
net.ipv4.tcp_r(w)mem.

SACK and DSACK
Selective acknowledgments (SACK) and duplicate SACK (SACK) are a way to optimize TCP traffic. When this option
is turned on, the host will validate SACK in the TCP option field in the TCP header when it sends out a SYN packet. This
option selectively acknowledges each segment in a TCP window. This is especially good on very lossy connections.
However, SACKs and DSACKs can adversely affect performance on gigabit networks with no traffic competition.
While enabled by default, SACK and DSACK options should be disabled on high-speed network for optimal TCP/IP
performance.

The net.ipv4.tcp_sack and net.ipv4.tcp_dsack options takes a boolean value. This is per default set to 1,
or turned on. Disable these options with the following lines:

'net.ipv4.tcp_sack','0',
'net.ipv4.tcp_dsack','0',

Timestamps
Each time an Ethernet frame is forwarded to the network stack of the Linux kernel, it receives a timestamps. Timestamps
are defined in RFC 1323. This behavior is useful and necessary for edge systems such as firewalls, but backend systems
might benefit from disabling the TCP timestamps by reducing some overhead. In addition, on some kernel versions
timestamps disables automatic window scaling.

The net.ipv4.tcp_timestamps variable tells the kernel to use timestamps as defined in RFC 1323. It takes a
boolean value and is per default set to 1 (enabled). Add the following line to disable timestamps:

'net.ipv4.tcp_timestamps','0',

Backlog
The backlog variable tells the kernel the maximum number of remembered connection requests, which currently did
not receive an acknowledgment from connecting client. It is recommended to increase this number if the server suffers
of overload.

The net.core.netdev_max_backlog parameter should be set at least to 2500 for a 1 GBits Ethernet connection
and 30000 for 10 Gbits Ethernet connection.

For 1 Gbits network
'net.core.netdev_max_backlog','2500',
For 10 Gbits network
'net.core.netdev_max_backlog','30000',

Benchmark tools
In this section, we discuss major benchmark tools. A benchmark is nothing more than a model for a specific workload
that might or might not be close to the actual workload that will run on a system. Generally, the following rules should
be observed when performing a benchmark on any system:

TCP Tuning with Quattor

4

• Simulate the expected workload: All benchmarks have different configuration options that should be used to tailor
the benchmark towards the workload that the system should be running in the future.

• Isolate the benchmark systems: If a system is to be tested with a benchmark it is paramount to isolate it from any
other load as much as possible.

• Average results: Even if you try to isolate the benchmark system there might be unknown factors that could impact
systems performance just at time of your benchmark. It is good practice to run any benchmark at least three times
and look at the dispersion. If the dispersion is to high, it is advisable to investigate uncontroled parameters in the
benchmark.

Iperf
Iperf is a performance benchmark tool that focuses on TCP/IP networking performances. It allows the user to set various
parameters that can be used for testing, or alternately for optimizing or tuning a network. Iperf has client and server
functionality, and can measure the throughput between the two ends.

Further documentation can be obtained on the Iperf website [http://iperf.sourceforge.net/].

For testing the TCP tuning, the following command can be used:

• On the server

[root@localhost ~]$ iperf -m -sD -p 5001

This command start the iperf server as a daemon. The service is listening on port 5001.

• On the client

[root@localhost ~]$ iperf -c iperfserver.my_domain -m -i 5 -p 5001 \
> -w 2048k -l 40M -t 40 -r -L 24001

In this example, the command will launch an iperf client that connect to the iperfserver.my_domain server with the
following options:

• -m: print TCP maximum segment size;

• -i 5: pause 5 seconds between periodic bandwidth reports;

• -p 5001: connect to port 5001;

• -w 2048k: use a size of 2048 KB for the TCP window;

• -l 40M: set the length of the read/write buffer to 40 MB;

• -t 40: transmit for 40s;

• -r: Do a bidirectional test individually;

• -L 24001: receive bidirectional tests back on port 24001.

Netperf
Netperf is a benchmark software that can be used to measure the performance of many different types of network usage.
It provides tests for both unidirectional throughput, and end-to-end latency. It is based on a client-server model. The
netserver application run on a target system and netperf runs on the client, netperf controls the netserver and passes
configuration data to netserver generates network traffic, and gets the result from netserver through a control connection
that is separated from the actual benchmark traffic connection. During the benchmarking, no communication occurs
on the control connection so it does not have any effect on the result. The netperf benchmark tool also has a reporting
capability including a CPU utilization report.

http://iperf.sourceforge.net/
http://iperf.sourceforge.net/

TCP Tuning with Quattor

5

For further informations, visit the official website [http://www.netperf.org/netperf/]

Further reading
The publications listed in this section are considered particularly suitable for a more detailed discussion of the topic
covered by this documentation.

Books
• TCP/IP Architecture, Design and Implementation in Linux, by Sameer Seth and M. Ajaykumar Venkatesulu (ISBN

978-0-470-14773-3)

• Linux Performance and Tuning Guidelines, by Eduardo Ciliendo and Takechika Kunimasa (http://
www.redbooks.ibm.com/redpapers/abstracts/redp4285.html).

Web Articles
• http://fasterdata.es.net/

• http://monalisa.cern.ch/FDT/documentation_syssettings.html

• http://indico.cern.ch/contributionDisplay.py?sessionId=31&contribId=55&confId=61917

• http://www.psc.edu/networking/projects/tcptune/

• http://onlamp.com/pub/a/onlamp/2005/11/17/tcp_tuning.html

• http://en.wikipedia.org/wiki/TCP_tuning

RFCs
• RFC 1323 [http://www.ietf.org/rfc/rfc1323.txt?number=1323]: TCP Extensions for High Performance

• RFC 2883 [http://www.ietf.org/rfc/rfc2883.txt?number=2883]: An Extension to the Selective Acknowledgement
(SACK) Option for TCP

http://www.netperf.org/netperf/
http://www.netperf.org/netperf/
http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://fasterdata.es.net/
http://monalisa.cern.ch/FDT/documentation_syssettings.html
http://indico.cern.ch/contributionDisplay.py?sessionId=31&contribId=55&confId=61917
http://www.psc.edu/networking/projects/tcptune/
http://onlamp.com/pub/a/onlamp/2005/11/17/tcp_tuning.html
http://en.wikipedia.org/wiki/TCP_tuning
http://www.ietf.org/rfc/rfc1323.txt?number=1323
http://www.ietf.org/rfc/rfc1323.txt?number=1323
http://www.ietf.org/rfc/rfc2883.txt?number=2883
http://www.ietf.org/rfc/rfc2883.txt?number=2883

